Instruction Manual | Description | Item Number | |--------------|-------------| | WRG-S-NW25 | D147-01-000 | | WRG-SL-NW25 | D147-11-000 | | WRG-D-NW25 | D147-02-000 | | WRG-S-DN40CF | D147-03-000 | # Declaration of Conformity We, BOC Edwards, Manor Royal, Crawley, West Sussex RH10 2LW, UK declare under our sole responsibility that the product(s) Wide Range Gauge WRG-S-NW25 WRG-SL-NW25 WRG-D-NW25 WRG-S-DN40CF D147-01-000 D147-11-000 D147-02-000 D147-03-000 to which this declaration relates is in conformity with the following standard(s) or other normative document(s) EN61010-1:2001 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use. EN61326:1997 Electrical Equipment for Measurement, Control and Laboratory Use + A1:1998 + A2:2001 EMC Requirements. (Industrial environment, Class B Emissions) following the provisions of 89 / 336 / EEC Electromagnetic Compatibility Directive. Dr. J.D. Watson, Director of Technology, VEMD 2 seatenber 2004 shoreman Date and Place This product has been manufactured under a quality system registered to ISO9001 # **CONTENTS** GEA/0104 | Section | Title | Page | |----------|---|--------| | 1
1.1 | INTRODUCTION Scope and definitions | 1
1 | | 1.2 | Description | 1 | | 1.3 | Gas dependency | 3 | | 2 | TECHNICAL DATA | 5 | | 2.1 | Mechanical data | 5 | | 2.2 | Performance, operating and storage conditions | 5 | | 2.3 | Electrical data | 5 | | 2.4 | Materials exposed to vacuum | 6 | | 3 | INSTALLATION | 9 | | 3.1 | Unpack and inspect | 9 | | 3.2 | Fit the WRG to the vacuum system | 9 | | 3.3 | Electrical connections | 9 | | 3.3.1 | Connect to BOC Edwards Controllers or AGD display | 10 | | 3.3.2 | Connect to your own supply and control equipment | 10 | | 4 | OPERATION | 12 | | 4.1 | Safety | 12 | | 4.2 | Pressure measurement | 13 | | 4.3 | Atmosphere adjustment | 13 | | 4.4 | Vacuum adjustment | 15 | | 4.5 | Set-point | 15 | | 4.6 | Error monitoring | 16 | | 5 | MAINTENANCE | 17 | | 5.1 | Introduction | 17 | | 5.2 | Replace the body tube | 18 | | 5.3 | Replace the electrode and pirani assemblies | 19 | | 5.4 | Replace the electronics and magnet housing | 20 | | 5.5 | Clean the internal components | 20 | | 6 | STORAGE AND DISPOSAL | 22 | | 6.1 | Storage | 22 | | 6.2 | Disposal | 22 | | Section | Title | Page | | |------------|---|------|--| | 7 | SERVICE, SPARES AND ACCESSORIES | 23 | | | 7.1 | Introduction | 23 | | | 7.2 | Service | 23 | | | 7.3 | Spares | 23 | | | 7.4 | Accessories | 24 | | | | RETURN OF EDWARDS EQUIPMENT | | | | Illustrati | lons | | | | Figure | Title | Page | | | 1 | General view of the WRG-S and -SL | 4 | | | 2 | General view of the WRG-D 4 | | | | 3 | Dimensions (mm) of the WRG-S-NW25 and WRG-SL-NW25 7 | | | | 4 | Dimensions (mm) of the WRG-D | | | | 5 | Dimensions (mm) of the WRG-S-DN40CF 8 | | | | 6 | Schematic diagram of typical electrical connections for the WRG | 11 | | | 7 | Pressure-voltage characteristic of the WRG | 14 | | | 8 | Refitting the body tube assembly 18 | | | | 9 | Exploded view of the body tube assembly 21 | | | | Tables | | | | | Table | Title | Page | | | 1 | Pin identification | 10 | | Wide Range Gauge ii ### 1 INTRODUCTION ## 1.1 Scope and definitions This manual provides installation, operation and maintenance instructions for the Edwards WRG (Wide Range Gauge). You must use the WRG as specified in this manual. Read this manual before you install and operate the WRG. Important safety information is highlighted as WARNING and CAUTION instructions; you must obey these instructions. The use of WARNINGS and CAUTIONS is defined below. ### **WARNING** Warnings are given where failure to observe the instruction could result in injury or death to people. ### **CAUTION** Cautions are given where failure to observe the instruction could result in damage to the equipment, associated equipment or process. The units used throughout the manual conform to the SI international system of units of measurement. The following symbol is on the Wide Range Gauge: From August 2005, BOC Edwards will offer European customers a recycling service. # 1.2 Description The Wide Range Gauge, shown in Figure 1, is a combined inverted magnetron and pirani gauge in a single compact unit. The WRG incorporates a unique striking mechanism consisting of a small incandescent filament mounted inside the magnetron tube. This filament is automatically ignited providing enough emission electrons to initiate the discharge. The WRG incorporates an intelligent microprocessor based control system which is used to control the various features such as: - ★ Automatic control of the magnetron HT voltage during the ignition of the gauge. - ★ Reduction of the HT voltage after ignition to enhance the life time of the gauge. - ★ Automatic adjustment of the pirani vacuum reading. - ★ Provision of an error monitoring feature which will help identify the exact cause of failure. - ★ Simple adjustment of the set-point trip level. Three versions of the Wide Range Gauge are available: the 'S', 'SL' and the 'D' gauges. The 'S' and 'SL' versions have an FCC68 connector socket while the 'D' version has a 9 way D-type socket. The 'SL' gauges have a very low external magnetic field and are suitable for use with sensitive analytical instruments. The 'S' version is available with either a NW25 or DN40CF flange. The WRG is compatible with the AGC range (Active Gauge Controllers) and with the appropriate versions of the AGD (Active Gauge Display). Alternatively, an independent power supply can be used for the WRG and the output signal can be read with a voltmeter or an analogue-to-digital converter. The WRG has a set-point facility. The set-point signal is an open collector transistor output, which is on when the pressure measured by the gauge is below a preset pressure. You can adjust the pressure at which the set-point output is activated, refer to Section 4.5. Note: If you use an Active Gauge Controller or Active Gauge Display, the WRG set-point output signal is not used. # 1.3 Gas dependency In the pirani measurement range the rate of heat transfer through a gas is dependent upon both the pressure and the RMM (Relative Molecular Mass) of the gas. Similarly, in the inverted magnetron measurement range the ionisation of the gas in the vacuum system is dependent on both the pressure and the physical properties of the gas. Therefore, the output signal of the WRG is gas dependent. The output signal voltage to pressure conversion in Section 4.2 applies for nitrogen and dry air. Calibration graphs for use with other commonly used gases are available on request. Figure 1 - General view of the WRG-S and -SL Figure 2 - General view of the WRG-D # Key to Figures 1 and 2 Set atmosphere Set trip Cable strain relief Electronics housing Vacuum flange Magnet housing Cable strain relief Cable connector plug Connector socket ## 2 TECHNICAL DATA ### 2.1 Mechanical data Dimensions See Figures 3, 4 and 5 Mass WRG-S-NW25 750 g WRG-D-NW25 750 g WRG-SL-NW25 800 g WRG-S-DN40CF 1000 g Volume of gauge tube 26 cm³ **Enclosure rating** WRG-S-NW25 IP40 WRG-SL-NW25 IP40 WRG-S-DN40CF IP40 WRG-D-NW25 IP44 (provided that the gauge is mounted vertically with the vacuum flange at the bottom) # 2.2 Performance, operating and storage conditions Ambient temperature Maximum internal pressure operation 5 to 60 °C storage 0 to 70 °C Ambient humidity (operation) max 90% RH (non- condensing) up to 31 °C max 70% RH (non- condensing) above 31 °C 6 bar absolute (5 bar gauge) Maximum operating altitude 2000m Pressure measurement range 100 to 10⁻⁹ mbar (indicates pressures up to 1000 mbar at reduced accuracy) Pollution category IEC1010 Category 2 ### 2.3 Electrical data Electrical supply Voltage +14.5 to +36 V d.c. Max voltage ripple 1 V peak to peak Electrical connector WRG-S-NW25 FCC68/RJ45 type, 8-way WRG-SL-NW25 FCC68/RJ45 type, 8-way WRG-S-DN40CF FCC68/RJ45 type, 8-way WRG-D-NW25 9 way D-type male Pressure output signal Range 2 - 10 V d.c. Error range < 1.5 V d.c. or > 10.15 V d.c. $\begin{array}{ll} \text{Impedance} & 0.1\,\Omega \\ \text{Min load impedance} & 10\,k\Omega \\ \text{Max current source} & 1\,\text{mA} \\ \end{array}$ Set-point output external load rating 40 V d.c., 100 mA max Set-point trip level Range 1.8 to 10.2 V Hysteresis 330 mV Back EMF suppression diode* Min. surge rating 1 A Min. reverse voltage rating 100 V Atmosphere calibration input Control sense Active low Active level < 1.5 V Control impedance $100 \text{ k}\Omega$ pull-up to positive supply Gauge identification resistance $75 \text{ k}\Omega \pm 2\%$ # 2.4 Materials exposed to vacuum - Stainless steel (AISI 304, 316, 321, 347) - Fluoroelastomer - Soda lime glass - Tungsten - Trace of Nickel and Nickel iron ^{*} Required when you use an external d.c. relay connected to the set-point output. Figure 3 - Dimensions (mm) of the WRG-S-NW25 and WRG-SL-NW25 Figure 4 - Dimensions (mm) of the WRG-D-NW25 Figure 5 - Dimensions (mm) of the WRG-S-DN40CF ### 3 INSTALLATION # 3.1 Unpack and inspect ### **WARNING** The WRG incorporates magnets. Keep away from heart pacemakers, computers, credit cards and any other magnetically sensitive devices. Remove all packing materials and protective covers and check the WRG. If the WRG is damaged, notify your supplier and the carrier in writing within three days; state the Item Number of the WRG together with your order number and your supplier's invoice number. Retain all packing materials for inspection. Do not use the WRG if it is damaged. If the WRG is not to be used immediately, replace the protective covers. Store the WRG in suitable conditions as described in Section 6. ## 3.2 Fit the WRG to the vacuum system The WRG can be mounted in any orientation. To avoid the build-up of debris or condensable material in the body tube of the WRG (which might cause pressure measurement errors), we recommend that you install the WRG vertically as shown in Figures 3, 4 and 5. Use an 'O' ring/centring ring or Co-Seal and clamp to connect the NW25 flange of the WRG to a similar flange on your vacuum system. Use a copper gasket and screws to connect the DN40CF flange of the WRG-S-DN40CF to a similar flange on your vacuum system. ### 3.3 Electrical connections ### **WARNING** If the WRG malfunctions, the WRG pressure output may be incorrect. If such a failure could cause injury to people or damage equipment, you must install a suitable control system to indicate the failure and, if necessary, to close down your process system. When using a cable longer than 30 m, full compliance with the EN61326 requires an in-line surge suppressor (please refer to Section 7.4). # 3.3.1 Connect to BOC Edwards Controllers or AGD display Connect the WRG to the controller or display with a cable which is terminated in suitable connectors. Suitable cables are available upon request. (See Section 7.4). # 3.3.2 Connect to your own supply and control equipment Note: You should not connect the electrical supply common (pin 2) to the signal common (pin 5). If you do, the WRG pressure output signal may be inaccurate. A schematic diagram of the recommended electrical connections to the WRG is shown in Figure 6. The pins of the FCC68 and D-type sockets on the WRG electrical connection are used as shown in Table 1. | Pin
Number | Connection | |---------------|---------------------------------------| | 1 | Supply positive | | 2 | Supply common | | 3 | Signal output | | 4 | ID resistor | | 5 | Signal common | | 6 | Set-point output | | 7 | Atmosphere calibration | | 8 | Not connected | | 9 | Not connected (D-type connector only) | Table 1 - Pin identification Connections to pins 4, 6 and 7 are optional. Make the connection to pin 6 if you want to connect the set-point output signal to a d.c. relay. You must connect a suppression diode between pin 1 and 6 to protect the WRG from transient voltage generated when the d.c. relay is switched off. Measure between pins 4 and 5 to determine the value of the ID resistor. Connect a switch between pins 2 and 7 to enable calibration of the gauge at atmosphere and vacuum. (Refer to Sections 4.3 and 4.4). - A Electrical supply - B Voltmeter (pressure signal) - C Back EMF suppression diode (optional) - D D.C. Relay (optional) - E Atmosphere calibration switch - F Pin 9 of D-type connector (not in use) Figure 6 - Schematic diagram of typical electrical connections for the WRG ### 4 OPERATION # 4.1 Safety ### WARNING Do not use the WRG to measure the pressure of explosive or flammable gases or mixtures. ### **WARNING** Never operate the WRG when it is disconnected from the vacuum system or when there are explosive or flammable gases in the surrounding atmosphere or the vacuum system. High voltages (up to 3 kV) are generated inside the body tube of the WRG; these could cause injury to people or could be a source of ignition. ### **WARNING** Do not disconnect the electronics and magnet housing from the body tube when the body tube is connected to the vacuum system. If there is a plasma discharge in the vacuum system near the body tube, the body tube can become electrically charged. ### **WARNING** When the pressure of gases of high molecular weight are measured, the pressure indicated can be below the true pressure. Ensure that the WRG is not over-pressurised when you use heavy gases. ### **WARNING** Use the gauge only for its intended purpose as described in this instruction manual. ### **CAUTION** The WRG has a magnet which may affect sensitive devices such as floppy disks. The effect is reduced on the -SL version. ### WARNING The WRG incorporates magnets. Keep away from heart pacemakers, computers, credit cards and any other magnetically sensitive devices. ### 4.2 Pressure measurement If you connect the WRG to an Edwards AGC controller or AGD display, the pressure measured by the WRG is shown on the display. If you connect the signal output of the WRG to a voltmeter, convert the measured voltage to the corresponding pressure value using the following equation $$P = 10^{(1.5 \text{ V-}12)} \text{ mbar}$$ = $10^{(1.5 \text{V-}10)} \text{ Pascal}$ = $10^{(1.5 \text{V-}12.125)} \text{ torr}$ where V is the measured voltage. For example, if the measured voltage V = 4, then pressure $P = 10^{-6}$ mbar. Refer also to Figure 7. # 4.3 Atmosphere adjustment Use the "ATM" switch (see Figures 1 and 2, item 3) or pin 7 and 2 to set the reading at atmosphere. Switch on the power supply to the WRG and allow it to operate at atmospheric pressure for at least 10 minutes. With the vacuum system at atmospheric pressure, press the "ATM" switch with an appropriate tool. The output of the gauge will be automatically adjusted to read atmosphere. Figure 7 - Pressure-voltage characteristic of the WRG $\,$ ## 4.4 Vacuum adjustment The WRG will perform the pirani sensor vacuum setting automatically every time the WRG is pumped down to a pressure lower than 10^{-4} mbar. Therefore a manual setting of vacuum is not required unless the pirani tube is replaced. If the gauge fails to indicate pressure of $< 10^{-3}$ mbar, then a manual vacuum setting is required. To perform this operation, follow the procedure below. Reduce the system pressure to 10⁻⁵ mbar or below and wait for 1 minute. Press and release the "ATM" switch and wait for approximately 30 seconds until the adjustment is completed. Manual adjustment of the vacuum reading is recommended when replacing the pirani tube or after a long period of storage. If an operator has tried to set the atmosphere or vacuum reading while the actual pressure is between 10^{-2} and 10^{2} mbar, an error voltage of 1 V will be displayed indicating a pirani failure. See Section 4.6. # 4.5 Set-point Note: The set-point is not used if you connect the WRG to an Edwards Active Gauge Controller or Active Gauge Display. To read the voltage at which the set-point output signal is activated, press the set trip switch (see Figures 1 and 2) with an appropriate tool. The output of the gauge will indicate the set trip level for 3 seconds after which the output will read the normal voltage output. To adjust the voltage at which the set-point output signal is activated, press the set trip switch and hold it down for more than 3 seconds. The set-point voltage will start scrolling upwards. Remove pressure from the switch as soon as you reach the required trip voltage. To make a finer adjustment, remove pressure from the set trip switch and immediately depress the switch as many times as required. Each depression will increase the set trip voltage by about 10 mV. Refer to Section 4.2 to determine the operating voltage which corresponds to a given pressure. The WRG has an error monitoring facility, which ensures that the setpoint output signal is off: - when the gauge is switched off - for 2 seconds immediately after the WRG is switched on - when the pressure output signal is out of range - when an error voltage is detected, see Section 4.6 If required, you can adjust the set-point operating voltage to $< 1.9 \,\mathrm{V}$. This ensures that the set-point output is permanently off. If required, you can use the set-point output signal to indicate when the gauge is operating correctly. Adjust the set-point operating voltage to > 10.15 V. The set-point output will then be on if the gauge is operating normally, and off if an error condition is detected. *Note:* If you adjust the set-point operating voltage to > 9.7 V, the hysteresis voltage will be > 10 V and the set-point output signal may not switch off when the pressure rises. If so, the set-point output signal will switch off only when the gauge is switched off. ## 4.6 Error monitoring The gauge is able to perform some internal error monitoring functions, and respond in a defined manner, as summarised below. These operate in conjunction with the user controls to define the gauge operation. The responses are prioritised in the order shown. The error condition is reset (cleared) when the gauge is disabled or power is removed. | Error indications: | Output | BOCE | |---------------------------------|---------|-------------| | | Voltage | Controllers | | | | Output | | Pirani failure | 1 V | ERR A | | Inverted magnetron contaminated | 1.1 V | ERR B | | or short circuited | | | | Striker filament broken | 1.2 V | ERR C | | Inverted magnetron not struck | 1.3 V | ERR D | The error condition 'striker filament broken' will occur only if the inverted magnetron fails to strike. The set-point will be disabled as soon as one of the above errors is detected. ### 5 MAINTENANCE ### 5.1 Introduction ### **WARNING** Do not disconnect the electronics and magnet housing from the body tube when the body tube is connected to the vacuum system. If there is a plasma discharge in the vacuum system near the body tube, the pins of the anode assembly can become electrically charged. ### **WARNING** Disconnect the cable from the WRG before you remove the WRG from the vacuum system. High voltages are generated inside the WRG. The internal components of the WRG are shown in Figure 8. The WRG is designed so that you can clean these components, or use the spares listed in Section 7.3 to replace these components. Refer to the following sections for details of maintenance procedures, which you should perform when necessary. # 5.2 Replace the body tube Refer to Figure 8 and use the following procedures to replace the body tube. To remove the body tube assembly: Switch off the WRG electrical supply and ensure that the vacuum system is at atmospheric pressure. Disconnect the cable connector plug (Figure 1 and 2, item 5) and remove the WRG from the vacuum system. Hold the magnet housing firmly and pull the body tube assembly to remove. To refit the body tube assembly: Insert the body tube assembly into the magnet housing and then rotate it while maintaining gentle pressure until the tube assembly locates. Push fully home until the locking spring snaps into position. Refit the gauge to the vacuum system as described in Section 3.2 and reconnect the electrical supply. Figure 8 - Refitting the body tube assembly # 5.3 Replace the electrode and pirani assemblies Refer to Figure 9 and the following procedure. Remove the WRG from the vacuum system and the body tube assembly from the WRG as described in Section 5.2. Use a suitable screwdriver to unscrew the four screws (1) on the top of the body tube and remove the pirani tube housing (2), pirani tube (4), viton gasket (5), anode assembly (6) and the viton 'O' ring (7) from the body tube (9). Use circlip pliers to remove the circlip (12) from the vacuum flange end of the body tube (9), then remove the cathode tube (11) and the cathode plate (10). Fit the new cathode plate (10) and cathode tube (11) into the body tube (9) and secure with the circlip (12). Fit the new 'O' ring (7) and anode assembly (6) onto the body tube (9). Ensure that the orientation of the anode assembly is correct. Take care not to damage the striker filament (13). Fit the pirani tube (4) inside the plastic pirani housing (2). Place the gasket (5) onto the pirani housing (2) and press with your thumb to locate it in the pirani housing (2). Place the combination of the pirani housing (2), pirani tube (4) and the gasket (5) onto the anode assembly. Ensure that the three pins are located correctly. Gently rotate the anode assembly together with the pirani assembly until the arrow (3) on the plastic pirani housing is aligned with the groove (8) in the body tube. Take care not to damage the striker filament (13). Refit the four M2 screws (1) with their washers into the four holes in the plastic pirani housing (2) and tighten evenly to a torque of 0.2 N.m. Refit the body tube to the magnet housing as described in Section 5.2. # 5.4 Replace the electronics and magnet housing The magnet housing and end-cap contain the WRG control electronics. Replace the complete unit as described below. Remove the WRG from the vacuum system and the body tube assembly as described in Section 5.2. Dispose of the old electronics and magnet housing (refer to Section 6.2). Fit the body tube to the new electronics and magnet housing as described in Section 5.2. Refit the WRG to the vacuum system as described in Section 3.2. # 5.5 Clean the internal components Refer to Figure 8 in the following procedure. Remove the internal components from the magnet housing as described in Section 5.3. Clean the pirani tube (4) in alcohol for about 5 minutes (using an ultrasonic tank if available). Place the pirani tube (4) with the opening end facing downward on a piece of clean tissue and leave it to dry. Use an abrasive material (e.g. Scotchbrite $^{\text{m}}$) to clean the anode assembly (6). Extra care is required when cleaning the area around the striker filament (13). Clean the anode assembly (6) in alcohol for about 5 minutes (using an ultrasonic tank if available). Place the anode assembly (6) on a piece of clean tissue and leave it to dry. Degrease the cathode plate (10), cathode tube (11) and body tube (9) in a suitable degreasing agent. Thoroughly soak them in a suitable laboratory detergent. Rinse in clean water to remove the detergent and then in methanol to remove all of the water, then thoroughly dry the components. Refit the components in the electronics and magnet housing as described in Section 5.2. - 1 M2 screws and washers - 2 Pirani housing - 3 Alignment arrow - 4 Pirani tube - 5 Gasket - 6 Anode assembly - 7 'O' ring - 8 Alignment groove - 9 Body tube - 10 Cathode plate - 11 Cathode tube - 12 Circlip - 13 Strike filament Figure 9 - Exploded view of the body tube assembly ### 6 STORAGE AND DISPOSAL # 6.1 Storage Return the WRG to its protective packaging and store the WRG in clean dry conditions until required for use. Do not exceed the storage temperature conditions specified in Section 2. When required for use, prepare and install the WRG as described in Section 3. # 6.2 Disposal Dispose of the WRG and any components safely in accordance with all local and national safety and environmental requirements. Alternatively, you may be able to recycle the WRG and/or cables; contact BOC Edwards or your supplier for advice (also see below). The WRG and associated cables are within the scope of the European Directive on Waste Electrical and Electronic Equipment, 2002/96/EC. From August 2005, BOC Edwards will offer European customers a recycling service for the WRG/cables at the end of the product's life. Contact BOC Edwards for advice on how to return the WRG/cables for recycling. Particular care must be taken if the WRG has been contaminated with dangerous process substances or if the WRG has been overheated or has been in a fire. Fluoroelastomers are used in the WRG; these are safe in normal use, but can decompose into dangerous breakdown products if heated to 260 °C and above. # 7 SERVICE, SPARES AND ACCESSORIES ### 7.1 Introduction Edwards products, spares and accessories are available from Edwards companies in Belgium, Brazil, Canada, France, Germany, Hong Kong, Italy, Japan, Korea, Switzerland, United Kingdom, U.S.A and a worldwide network of distributors. The majority of these centres employ Service Engineers who have undergone comprehensive Edwards training courses. Order spare parts and accessories from your nearest Edwards company or distributor. When you order, please state for each part required: - Model and Item Number of your equipment - Serial number (if any) - Item Number and description of the part. ### 7.2 Service Edwards products are supported by a world-wide network of Edwards Service Centres. Each Service Centre offers a wide range of options including: equipment decontamination; service exchange; repair; rebuild and testing to factory specifications. Equipment which has been serviced, repaired or built is returned with a full warranty. Your local Service Centre can also provide Edwards engineers to support on-site maintenance, service or repair of your equipment. For more information about service options, contact your nearest Service Centre or other Edwards company. # 7.3 Spares | Spares | Item Number | |--------------------------------|-------------| | Electronics and magnet housing | | | WRG-S-NW25 | D147-01-800 | | WRG-SL-NW25 | D147-11-800 | | WRG-D-NW25 | D147-02-800 | | Body tube assembly NW25 | D147-01-801 | | Body tube assembly DN40CF | D147-03-801 | | Electrode assembly kit * | D147-01-802 | | Pirani tube replacement kit ** | D147-01-803 | |--------------------------------|-------------| | Full body tube service kit *** | D147-01-804 | ^{*} The electrode assembly kit contains one each of the following components: cathode plate, cathode tube, anode assembly, 'O' ring, plastic pirani housing, circlip, gasket and 4 screws and washers. ### 7.4 Accessories The cables suitable for use with the WRG are as follows. These cables are supplied with 8-way male electrical connectors on both ends. | Cable lengt | h | Item Number | | |-------------------------------|-----------|-------------|--| | 0.5 m | 18 inches | D400-01-005 | | | 1 m | 3 feet | D400-01-010 | | | 3 m | 10 feet | D400-01-030 | | | 5 m | 15 feet | D400-01-050 | | | 10 m | 30 feet | D400-01-100 | | | 15 m | 50 feet | D400-01-150 | | | 25 m | 80 feet | D400-01-250 | | | 50 m | 150 feet | D400-01-500 | | | 100 m | 325 feet | D400-01-999 | | | 9-way D type to FCC68 adapter | | D400-03-100 | | | Surge supp | ressor | D400-06-000 | | ^{**} The pirani tube replacement kit contains one each of the following components: pirani tube assembly, pirani housing, gasket and 4 screws and washers. ^{***} The full body tube service kit contains one each of the following components: cathode plate, cathode tube, anode assembly, 'O' ring, pirani tube assembly, plastic pirani housing, circlip, gasket and 4 screws and washers. # Return of BOC Edwards Equipment - Procedure ### INTRODUCTION Before returning your equipment, you must warn BOC Edwards if substances you used (and produced) in the equipment can be hazardous. This information is fundamental to the safety of our Service Centre employees and will determine the procedures employed to service your equipment. Complete the Declaration (HS2) and send it to BOC Edwards before you dispatch the equipment. It is important to note that this declaration is for BOC Edwards internal use only, and has no relationship to local, national or international transportation safety or environmental requirements. As the person offering the equipment for shipment, it is your responsibility to ensure compliance with applicable laws. ### **GUIDELINES** - Equipment is 'uncontaminated' if it has not been used, or if it has only been used with substances that are not hazardous. Your equipment is 'contaminated' if it has been used with any substances classified as hazardous under EU Directive 67/548/EEC (as amended) or OSHA Occupational Safety (29 CFR 1910). - If your equipment has been used with radioactive substances, biological or infectious agents, mercury, polychlorinated biphenyls (PCB's), dioxins or sodium azide, you must decontaminate it before you return it to BOC Edwards. You must send independent proof of decontamination (for example a certificate of analysis) to BOC Edwards with the Declaration (HS2). Phone BOC Edwards for advice. - If your equipment is contaminated, you must either: - Remove all traces of contamination (to the satisfaction of laws governing the transportation of dangerous/hazardous substances). - Or, properly classify the hazard, mark, manifest and ship the equipment in accordance with applicable laws governing the shipment of hazardous materials. Note: Some contaminated equipment may not be suitable for airfreight. ### **PROCEDURE** - 1. Contact BOC Edwards and obtain a Return Authorisation Number for your equipment. - 2. Complete the Return of BOC Edwards Equipment Declaration (HS2). - 3. If the equipment is contaminated, you must contact your transporter to ensure that you properly classify the hazard, mark, manifest and ship the equipment, in accordance with applicable laws governing the shipment of contaminated/hazardous materials. As the person offering the equipment for shipment, it is your responsibility to ensure compliance with applicable law. Note: Equipment contaminated with some hazardous materials, such as semiconductor by-products, may not be suitable for airfreight contact your transporter for advice. - 4. Remove all traces of hazardous gases: pass an inert gas through the equipment and any accessories that will be returned to BOC Edwards. Where possible, drain all fluids and lubricants from the equipment and its accessories. - 5. Seal up all of the equipment's inlets and outlets (including those where accessories were attached) with blanking flanges or, for uncontaminated product, with heavy gauge tape. - 6. Seal equipment in a thick polythene/polyethylene bag or sheet. - 7. If the equipment is large, strap the equipment and its accessories to a wooden pallet. If the equipment is too small to be strapped to a pallet, pack it in a suitable strong box. - 8. Fax or post a copy of the Declaration (HS2) to BOC Edwards. The Declaration must arrive before the equipment. - 9. Give a copy of the Declaration (HS2) to the transporter. You must tell your transporter if the equipment is contaminated. - 10. Seal the original Declaration in a suitable envelope: attach the envelope securely to the outside of the equipment package, in a clear weatherproof bag. - WRITE YOUR RETURN AUTHORISATION NUMBER CLEARLY ON THE OUTSIDE OF THE ENVELOPE OR ON THE OUTSIDE OF THE EQUIPMENT PACKAGE. # Return of BOC Edwards Equipment - Declaration Return Authorisation Number: You must: - Know about all of the substances which have been used and produced in the equipment before you complete this Declaration - Read the Return of BOC Edwards Equipment Procedure (HS1) before you complete this Declaration - · Contact BOC Edwards to obtain a Return Authorisation Number and to obtain advice if you have any questions - Send this form to BOC Edwards before you return your equipment | E | | | IF ADDITION IS | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------| | Equipment/System Name | | | IF APPLICABLE: | | | Part Number | | | | mber | | Serial Number | | | | | | Has the equipment been used, teste | · | | | | | YES Go to Section 2 NO G | Go to Section | 4 | Serial Number of
Replacement Equipr | ment | | SECTION 2: S | UBSTANCE | S IN CC | ONTACT WITH THE | EQUIPMENT | | Radioactive, biological or infectious agents, mercury, poly chlorinated biphenyls (PCBs), dioxins or sodium azide? (if YES, see Note 1) YES NO | | Note 1: BOC Edwards will not accept delivery of any equipment that is contaminated with radioactive substances, biological/infectious agents, mercury, PCB's, dioxins or sodium azide, unless you: Decontaminate the equipment | | | | Hazardous to human | , | • | Provide proof of deco | | | health and safety? | YES 🔲 N | o 🗖 | YOU MUST CONTACT BOC EDWARDS FOR ADVICE BEFORE YOU RETURN SUCH EQUIPMENT | | | SECTION 3: LIST (| OF SUBSTA | NCES II | N CONTACT WITH | THE EQUIPMENT | | Substance name | Chemical
Symbol | Precaut
use | tions required (for example, e protective gloves, etc.) | Action required after a spill,
leak or exposure | | | | | _ | | | | | | | | | | | | | | | | <u> </u> | <u> </u> | _ | | | | SECTION 4 | : RETU | RN INFORMATION | | | Reason for return and symptoms of | of malfunction _ | | | | | If you have a warranty claim: | | - | equipment from ?
pice number | | | | SECTI | ON 5: D | DECLARATION | | | Print your name: | | Prir | nt your job title: | | | Print your organisation: | | | | | | Print your address: | | | | · | | Telephone number: | | Date o | of equipment delivery: | | | I have made reasonable enquiry and
Declaration. I have not withheld an
BOC Edwards Equipment - Procedu | ny information, a | | | Note: Please print out this form, sign it and return the signed form as hard copy. | | Signed: | | Date | | | ### **EUROPE/UNITED KINGDOM** #### **BOC EDWARDS** Manor Royal Crawley West Sussex, RH10 9LW Tel +(44) 1293 528844 Fax +(44) 1293 533453 #### **AMERICAS** #### USA HEADQUARTERS BOC EDWARDS One Edwards Park 301 Ballardvale Street Wilmington, MA 01887 Tel +(1) 978 658 5410 Toll Free (USA only) 1800 848 9800 Fax +(1) 978 658 5410 3901 Burton Drive Santa Clara, CA 95054 Tel +(1) 408 496 1117 Fax +(1) 408 496 1118 1810 West Drake Drive Suite 101 Tempe, AZ 85283 Tel +(1) 480 777 7007 Fax +(1) 480 777 2244 4117 Commercial Center Drive Austin, TX 78744 Tel +(1) 512 416 0102 Fax +(1) 512 328 9846 3501 Island Avenue Philadelphia, PA 19153 Tel +(1) 215 365 8653 Fax +(1) 978 756 6846 U.S. National Sales Center Mon 8:30 A. M. - 8:00 P.M. EST Tues 8:30 A. M. - 8:00 P.M. EST Wed 8:30 A. M. - 8:00 P.M. EST Thurs 8:30 A. M. - 8:00 P.M. EST Fri 8:30 A. M. - 6:30 P.M. EST #### **BELGIUM** ### **BOC EDWARDS** Bergensesteenweg 709 B1600 Sint-Pieters-Leeuw Brussels Tel +(32) 2 363 0030 Fax +(32) 2 363 0064 ### **BRAZIL** #### **BOC DO BRAZIL LTDA** Rua Bernado Wrona 222 02710 São Paulo-SP Brazil Tel +(55) 11 3952 5000 Fax +(55) 11 3965 2766 #### **CANADA** ### **BOC EDWARDS** 5975 Falbourne Street Mississauga, Ontario L5R3W6 Canada Tel +(1) 800 387 4076 Fax +(1) 905 501 1225 12055 Cote de Liesse Dorval, Quebec H9P1B4 Canada Tel +(1) 514 631 3501 Fax +(1) 514 631 3502 #### CHINA # BOC TRADING (SHANGHAI) 23 Fu Te Road(N), Wai Gao Qiao Free Trade Zone Pudong, Shanghai, 200131, PRC, China Tel +(86 21) 58669618 Fax +(86 21) 58669993 #### GERMANY BOC EDWARDS Ammerthalstraße 36 85551 Kirchheim Munich Tel +(49) 89 99 19 18 0 Fax +(49) 89 99 19 18 99 #### FRANCE #### **BOC EDWARDS** 125 Avenue Louis Roche 92238 Gennevillers, Cedex Paris Tel +(33) 1 47 98 24 01 Fax +(33)1 47 98 44 54 #### HONG KONG S.A.R. BOC EDWARDS (ASIA) 12 Chun Yat Street Tseung Kwan O Industrial Estate Tseung Kwan O, Kowloon Hong Kong SAR Tel +(852) 2372 2640 Fax +(852) 2796 9095 #### INDIA # BOC EDWARDS DIVIN. OF BOC INDIA LIMITED 203 Surya Kiran Building 19 Kasturba Gandhi Marg New Delhi - 110 001 India Tel +(91) 11 237 33087 Fax +(91) 11 551 0245 #### **ISRAEL** #### **EDWARDS ISRAEL VACUUM LTD** 5 Habarzel Blvd Gat 2000 Industrial Zone Qiryat Gat 82000 Tel +(972) 8 681 0633 Fax +(972) 8 681 0640 #### **ITALY** ### **BOC EDWARDS** Via Carpaccio 35 20090 Trezzano sul Navigilo Milan Tel +(39) 2 48 4471 Fax +(39) 2 48 401638 #### **JAPAN** #### HEADQUARTERS BOC EDWARDS Shwa Shiba Park Building A-3F 2-4-1 Shibakoen Minato-ku Tokyo, 105-0011 Tel +(81)(0) 3 5470 6530 Fax +(81)(0) 3 5470 6521 ### **KOREA** # HEADQUARTERS SONGWON EDWARDS LTD 5th FL. Daewoo Engineering Bldg. Soonae-dong Bundang-gu, Sungnam City Kyungki-do, Korea Tel +(82) 31 716 7070 Fax +(82) 31738 1001 ### **SONGWON EDWARDS LTD** 625-7 Upsong-dong Chunan City Chungchong Nam-do Korea Tel +(82) 41 621 7070 Fax +(82) 41 621 7700 #### SINGAPORE ### **BOC EDWARDS (ASIA)** 42 Loyang Drive Loyang Indusrial Estate Singapore 508962 Tel +(65) 546 8408 Fax +(65) 546 8407 ### TAIWAN, R.O.C. ### **EDWARDS TAIWAN LIMITED** No. 434 Chung-hua Road Toufen Town, Miaoli County Taiwan R.O.C. Tel +(886) 37 611422 Fax +(886) 37 611401 PLEASE CONTACT ANY OF THE ABOVE FOR DETAILS OF OTHER SALES AND SERVICE CENTERS IN YOUR AREA. BOC Edwards is part of BOC Limited. BOC Edwards and the stripe symbol are trade marks of The BOC Group © BOC Edwards 2004 Publication No. C100-04-895 www.bocedwards.com info@bocedwards.com